
Formal languages
Strings Languages
Grammars

+id +
- (

)
*

/

+***

id+id*id
(id+id)*id

+(+)id

id

Symbols, Alphabet and strings

Language Processing Technologies Marco Maggini

2

String operations

Language Processing Technologies Marco Maggini

3

Languages

Language Processing Technologies • Marco Maggini

4

Operations on languages

Language Processing Technologies • Marco Maggini

5

Concatenation and closure

Language Processing Technologies Marco Maggini

6

Closure and linguistic universe

Language Processing Technologies Marco Maggini

7

Examples

Language Processing Technologies Marco Maggini

8

Grammars

Language Processing Technologies • Marco Maggini

9

Production rules

Language Processing Technologies Marco Maggini

10

T = {a,b,c}
N = {A,B,C}

production rules

L(G) = {anbncn | n ≥ 1}

Derivation

Language Processing Technologies Marco Maggini

11

The language of G
•  Given a grammar G the generated language is the set of strings, made

up of terminal symbols, that can be derived in 0 or more steps from the
start symbol

LG = { x ∈ T* | S ⇒* x}

Language Processing Technologies Marco Maggini

12

T = {num,+,*,(,)}
N = {E}
S = E

Example: grammar for the arithmetic expressions

E ⇒ E * E ⇒ (E) * E ⇒ (E + E) * E

⇒ (num + E) * E ⇒ (num+num)* E

⇒ (num + num) * num

start symbol

language phrase

Classes of generative grammars

Language Processing Technologies Marco Maggini

13

Regular languages
•  Regular languages can be described by different formal

models, that are equivalent
▫  Finite State Automata (FSA)
▫  Regular grammars (RG)
▫  Regular Expressions (RE)

•  Each formalism is suited for a given specific task
▫  A finte state automaton defines a recognizer that can be used to

determine if a strings belongs to a given regular language
▫  Regular grammars defined a generative model for the strings in

the language
▫  Regular expressions describe the structure of the strings in the

language (the define a pattern)

Language Processing Technologies Marco Maggini

14

Regular expressions – constants & variables

•  We define a set of constants and algebric operators

▫  Constants
  An alphabet symbol

  The empty string

  The empty set

▫  Variables
  A variable represents a “nickname” for a pattern defined by a regular

expression

Language Processing Technologies Marco Maggini

15

Regular expressions – Value of a RE

•  The value of a regular expression E corresponds to a
language on V, referred to as L(E)
▫  If E = s , s ∈ V then L(E) = {s}

  The value of a RE corresponding to a constant symbol is a language containing
the only string of length 1 containing the given terminal symbol

▫  If E = ε then L(E) = {ε}
  The value of a RE corresponding to the empty string is a language containing

only the empty string

▫  If E = ∅ then L(E) = ∅
  The value of a RE corresponding to the empty set is a language that contains no

elements
▫  A variable is associated to the value of the regular expression to which it

refers

Language Processing Technologies Marco Maggini

16

Regular expressions– Operators: union
•  We define three operators that allow us to combine REs

to yield a new RE
▫  Union of two RE U = R | S

  L(R | S) = L(R) ∪ L(S)

  The operator corresponds to the set union operator and consequently
has the following properties
  Commutativity R | S = S | R
  Associativity R | S | U = (R | S) | U = R | (S | U)

  The cardinality of the resulting language is such that

Language Processing Technologies Marco Maggini

17

Regular expressions – Concatenation
▫  Concatenation of two RE C = RS

  L(RS) = L(R)L(S) – The value of the RE is the language defined by the
concatenation of all the strings in L(R) with those ones in L(S)

  The operator is not commutative (RS ≠ SR in general)
  The operator is associative RSU = (RS)U = R(SU)
  The cardinality of the language resulting from the concatenation of

two regular expressions is such that

  The same string may be obtained by the concatenation of different strings in
L(R) and L(S)

Language Processing Technologies Marco Maggini

18

Regular expressions– an example
R = a | (ab) S= c | (bc)

RS = (a|(ab))(c|(bc)) = ac | (ab)c | a(bc) | (ab)(bc) =
 = ac | abc | abbc

L(RS) = {ac,abc,abbc}

The distributive property of concatenation with respect to union holds

(R (S | T)) = RS | RT ((S | T) R) = SR | TR

Language Processing Technologies Marco Maggini

19

Regular expressions–Kleene closure
•  The Kleene closure is a (suffix) unary operator

(R)*

▫  It has the maximum priority among all operators (use brackets!)
▫  It represents 0 or more concatenations of the expression R
▫  L(R*) contains

  The empty string ε (it corresponds to 0 concatenations of R – R0)
  All the strings in L(R), L(RR), L(RRR),…. that is

It corresponds to the (improper) regular expression
L(R*) = ε | R | RR| RRR | ….. | Rn | ….

Language Processing Technologies Marco Maggini

20

Regular expressions – examples & precedence

R = (a | b) L(R) = {a,b}
R* = (a | b)* L(R*) = {ε, a, b, aa, ab, bb, ba, aaa, aba, …}

•  The operator precedence is the following
▫  Kleene closure (highest priority)
▫  Concatenation
▫  Union (lowest priority)

•  Parentheses () are needed to write correct (and readable) REs

R = a | bc*d = a | b(c*)d = (a) | (b(c*)d) = ((a) | (b(c*)d))
L(R) = {a, bd, bcd, bccd,….., bcnd,….}

Language Processing Technologies Marco Maggini

21

Regular expressions– examples & variables
•  Variables names in a programming language
▫  Strings starting with a letter and containing alphanumeric

characters

alpha = A | B | C | … | Z | a | b | ….. |z|
numeric = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

variableid = alpha (alpha | numeric)*

L(variableid) = {A,B,…,a,…,z,AA,….,V1,…,i1,….,myvar,…}

Language Processing Technologies Marco Maggini

22

Regular expressions- examples
•  All the strings made up of 0,1 such that

▫  they end with 0 - R = (0 | 1)*0
▫  they contain at least one 1 – R = (0|1)*1(0,1)*
▫  they contain at most one 1 – R = 0*10*
▫  they have in the third rightmost position a 1

 – R = (0|1)*1(0|1)(0|1)
▫  they have even parity (an even number of 1s) – R = (0 | 10*1)*
▫  all the subsequences of 1s have even length – R = (0 | 11)*
▫  as binary numbers they are the multiples of 3 (11)

 - R = (0| 11 | 1(01*0)*1)*

Language Processing Technologies Marco Maggini

23

Regular expressions– multiples of 3 in binary representation

•  The regular expression can be derived from the remainder
computation for a division by 3
▫  The remainders are 00, 01, 10
▫  We can build a finite state automaton that computes the remainder when

scanning the number from left to right (i.e. by adding a bit at the end at each step)

▫  The paths from 00 to 00 are 0* | 11* | 101*01 and their concatenations….

Language Processing Technologies Marco Maggini

24

00 10 01 • 0
• 3n*2+0

• 1
• 3n*2+1

• 0
• (3n+1)*2+0 • 1

• (3n+2)*2+1

• 0
• (3n+2)*2+0

• 1
• (3n+1)*2+1

Regular expressions- equivalence
•  Two regular expressions are equivalent if they define the

same language

▫  by exploiting the algebraic equivalences among expressions we
can simplify the structure of regular expressions
  Neutral element

  union (∅ | R) = (R | ∅) = R
  concatenation εR = Rε = R

  Null element
  concatenation ∅ R = R∅ = ∅

  Commutativity (union) and Associativity (union and concatenation)

Language Processing Technologies Marco Maggini

25

Regular expressions– algebraic equivalences
•  Distributivity of concatenation with respect to union
▫  left - R(S|T) = RS | RT right – (S|T)R = SR | TR

•  Union idempotence
▫  (R | R) = R

•  Equivalences for Kleene closure

▫  ∅* = ε
▫  RR* = R*R = R+ (one or more concatenations of strings in L(R))
▫  RR*|ε = R*

•  Example

(0|1)*(10|11)(0|1) = (0|1)*1(0|1)(0|1) = (0|1)*1(00|01|10|11) = (0|1)*(100|101|110|111)

Language Processing Technologies Marco Maggini

26

Regular expressions and FSA
•  It is possible to transform a RE R into a non-

deterministic finite state automaton that recognizes the
strings in the language defined by R

•  It is possible to transform a (non-deterministic) finite
state automaton into a RE that defines the language
recongnized by that automaton

RE and FSA (NFSA) are equivalent models for the
definition of regular languages

Language Processing Technologies Marco Maggini

27

FSA with ε-transitions
•  This model extends the class of finite state automata by allowing

state transitions labeled by the empty-string symbol ε (ε-transitions)
▫  The consequence is that the automaton can perform a state transition even

without reading a symbol from the input string
▫  The automaton accept the input string if there exists at least one path w from the

start state to a final accepting state
  The path can contain arcs corresponding to ε-transitions beside those labeled by the

symbols in the input sequence
  The automaton is said to be non-deterministic since more than one path (state sequence)

may exist for a given input string

Language Processing Technologies Marco Maggini

28

q0 q2 q1 ε

2 0 1

start ε

R = 0*1*2*

002 0 0εε2
 q0q0q1q2q2

FSA with ε-transitions - definition

•  A finite state automaton with ε-transition si defined by a
tuple (Q,V,δ,q0,F) where

▫  Q = {q0,…, qn} is the finite set of states
▫  V = {s1, s2, … , sk} is the input alphabet
▫  δ: Q x (V ∪ {ε}) -> 2Q is the state transition function

  the actual transition is in general to a set of future states given the
presence of ε-transitions

▫  q0 ∈ Q is the start state
▫  F ⊆ Q is the set of the final accepting states

Language Processing Technologies Marco Maggini

29

From a RE to a FSA with ε-transitions

•  Given a RE R there exists a finite state automaton with
ε-transitions A that accepts only the strings in L(R)
▫  A has only one accepting state
▫  A as no transitions to the start state
▫  A has no transitions going out of the accepting state

•  The proposition can by proved by induction on the number n of
operators in the regular expression R
▫  n=0

R has only a constant ∅, ε o s ∈ V

Language Processing Technologies Marco Maggini

30

1

q0 q1 ε start

ε

q0 q1 s start start q0 q1

∅ ε s ∈ V

•  By induction we suppose to know how to construct the equivalent
automaton for a RE having n-1 operators
▫  One of the defined operators can be added to obtain a RE with n operators

1.  R = R1 | R2

2.  R = R1 R2

3.  R = R1*
where R1 and/or R2 have at most n-1 operators

R = R1 | R2

From a RE to a FSA with ε-transitions – n>0

Language Processing Technologies Marco Maggini

31

start

ε q01 qn1 qk1

q02 qn2 qk2

q0 qF

ε

ε

ε

FSA for R1

FSA for R2

The strings in L(R1) are
accepted following the
upper path and the
strings in L(R2) following
the lower path

From a RE to a FSA with ε-transitions – n>0

Language Processing Technologies Marco Maggini

32

start
q01 qn1 qk1 q02 qn2 qk2 ε

FSA for R1

FSA for R2

the automata that
recognize L(R1) and
L(R2) are concatenated

R = R1 R2

R = R1* q01 qn1 qk1

repetitions
ε

q0 qF

ε ε

ε
0 repetitions

start

FSA for R1

the arc εfrom qn1 to q01
allows the recognition of
the concatenations of
the strings in L(R1)

the arc εfrom q0 and qF
allows the recognition of
the empty string

From a RE to a FSA – example [1]

Language Processing Technologies Marco Maggini

33

R = a | bc*

Constants q0a q1a a start

a

q0b q1b b start

b

q0c q1c c
c* q01 q11 start

ε

ε

ε

ε

q0c q1c c start

c

From a RE to a FSA – example [2]

Language Processing Technologies Marco Maggini

34

q0a q1a a

q0b q1b b
q0c q1c c q01 q11

ε

ε

ε

ε c*
bc*

q02 q12

ε

ε

ε

ε

a | bc*

ε

start

Removal of ε-transitions
•  It is always possible to transform an automaton with
ε-transitions into a deterministic automaton (DFSA)
▫  if q is the current state, the automaton may perform any

transition to all the states reachable from q with ε-transitions
  it is like the automaton is in state q and in all its ε-reachable states

▫  For each state q we need to find all the states that are reachable
by ε-transitions
  it is a node reachability problem on a graph
  All the transitions not labeled with ε are removed
  A depth-first visit of the graph is performed from any node

▫  All the states that are ε-reachable from q are associated to the
original state q
  these sets represent the candidate states for the DFSA

Language Processing Technologies Marco Maggini

35

From ε-FSA to DFSA – key states

Language Processing Technologies Marco Maggini

36

1 2 a

4 5
b

7 8 c
6 9
ε

ε

ε

ε
0

3
ε

ε

ε

ε
ε

start

R(0) = {0,1,4}
R(1) = {1}
R(2) = {2,3}
R(3) = {3}
R(4) = {4}
R(5) = {3,5,6,7,9}
R(6) = {3,6,7,9}
R(7) = {7}
R(8) = {3,7,8,9}
R(9) = {3,9}

we define the key states
  states having an incoming arc labeled with a symbol
  start state

• SI = {0,2,5,8}

From ε-FSA to DFSA – transitions

Language Processing Technologies Marco Maggini

37

1 2 a

4 5
b

7 8 c
6 9
ε

ε

ε

ε
0

3
ε

ε

ε

ε
ε

start

0

2

5 8

start

a

b
c c

There is a transition from the key state i to the key
state j labeled with symbol s, if
  there exists a state k in R(i)
  there exists a transition from k to j with label s

A key state i is accepting if at least one accepting
state is in R(i)

From ε-FSA to DFSA – NDFSA & minimization

Language Processing Technologies Marco Maggini

38

0

2

5 8

start

a

b
c c

The resulting automaton may be non deterministic
 it may have more than one transition going out of
the same state with the same symbol
 there is an algorithm to transform this type of
NDFSA to an equivalent DFSA (we add a state for
each set of states that are reachable with the same
symbol)
  NDFSA, DFSA and ε-FSA are equivalent models

0

2

5/8

start

a

b c

The automaton may be minimized by finding
the classes of equivalent states

  equivalence at 0 steps (same output)
 {0} {2,5,8}
  equivalence at 1 step (input a b c)
 {0} {2} {5,8} (they differ for c)
  from 2 step 5 and 8 are indistinguishable

From FSAs to REs
•  For any FSA A there exists a regular expression R(A) that defines the

same language (set of strings) recognized by A
▫  It can be obtained by a progressive removal of states
▫  The arcs are labeled by regular expressions that describe the paths passing

through the set of states removed up to a give step

Language Processing Technologies Marco Maggini

39

u

sn

s2

s1

tm

t2

t1
U S1

S2

Sn

T2

T1

Tm

R11

sn

s2

s1

tm

t2

t1

Rij | SiU*Tj

removal of
state u

From FSAs to REs - example

Language Processing Technologies Marco Maggini

40

00 10 01 0

1 0

1

01

00 01 0

1

01*0

1

00 0 1(01*0)*1 R = (0|1(01*0)*1)*

From FSAs to REs – complete reduction
•  The reduction process must be repeated for each accepting state
▫  The final regular expression is the union of the regular expressions obtained for

each accepting state
▫  If we consider an accepting state, the corresponding regular expression is the label

of the path from the start state q0 and the accepting state qF

  All the state are removed by the reduction process until only q0 and qF are left

  We consider the regular expression describing the paths that originate in q0
and end into qF

R=S*U(T|VS*U)*

Language Processing Technologies Marco Maggini

41

q0 qF S T

V

U

Applications & standard for REs
•  There are several software applications/libraries that

exploit Res or support the management of REs
▫  search commands in text editors
▫  programs to search patterns in files (grep, awk)
▫  library functions/procedures that implement regular expression

matching (regex in stdlib C, RE support in PHP, perl, ecc.)
▫  programs to generate lexical scanners (lex)

•  The IEEE POSIX 1003.2 standard defines a syntax/
semantics to implement Res
▫  two levels: Extended RE and Basic RE (obsolete)

Language Processing Technologies Marco Maggini

42

POSIX 1003.2 - operators

•  The union operator is represented by the character |

•  The concatenation operator is implicitly obtained by writing the
sequence of symbols or symbol classes to be concatenated (or REs)

•  The standard defines also following unary operators
▫  * - 0 or more occurrences of the operand on the left
▫  + - 1 or more occurrences of the operand on the left
▫  ? – 0 or 1 occurrence of the operand on the left
▫  {n} – exactly n occurrences of the operand on the left
▫  {n,m} – between n and m occurrences of the operand on the left
▫  {n,} - more than n occurrences of the operand on the left

Language Processing Technologies Marco Maggini

43

POSIX 1003.2 – constants 1
•  Constants/atoms (operands for unary/binary operators)
▫  A character

  Special characters are represented by an escape sequence \
 e.g. \\ \| \. \^ \$

▫  A RE between ()
▫  The empty string ()
▫  A square bracket expression [] – a character class

  [abcd] any of the listed characters
  [0-9] the digits between 0 and 9
  [a-zA-Z] the lowecase and uppercase characters
to specify the character “minus” – it should be listed in the first position

▫  Any character .
▫  The start of a line ^
▫  The end of a line $

Language Processing Technologies Marco Maggini

44

POSIX 1003.2 – constants 2
▫  Exclusion of a character class

  [^abc] all characters excluding a b c (the character ^ strictly follows [)

▫  Predefined character classes
  [:digit:] only digits between 0 and 9
  [:alnum:] any alphanumeric character between 0 and 9, a and z or A and Z
  [:alpha:] any alphabetical character
  [:blanc:] space and TAB
  [:punct:] any punctuation character
  [:upper:] any uppercase alphabetical character
  [:lower:] any lowercase alphabetical character
  etc…

Language Processing Technologies Marco Maggini

45

POSIX 1003.2 - examples

•  A RE matches the first substring having maximum
length in the input text that verifies the specified pattern

•  Examples
▫  strings containing the vowels in alphabetical order

 .*a.*e.*i.*o.*u.*
▫  numbers with decimal digits

[0-9]+\.[0-9]*|\.[0-9]+
▫  number with two decimal digits

[0-9]+\.[0-9]{2}

Language Processing Technologies Marco Maggini

46

Lexical analysis & lex
•  The lex command is used to generate a scanner that is a

software module/program that is able to recognize
lexical entities in a text
▫  The scanner behavior is described in a source lex file that

contains the scanning rules (the patterns) and the associated
programming code (C)
▫  lex generates a source program (C) lex.yy.c that implements the

function yylex()
▫  The source is compiled and linked with the lex library (–lfl)
▫  The executable scans an input file searching for the matches of

the regular expressions (patterns)
  When a RE matches a substring in the input, the associated code (C) is

executed

Language Processing Technologies Marco Maggini

47

Scanner usage
•  The generated scanner allows us to split the input file

into tokens (atomic substrings) such as
▫  identifiers
▫  costants
▫  operators
▫  keywords

•  Each token is defined by a RE
•  The target language for flex is C, but there exists also

similar applications to generate code in other high-level
programming languages (e.g. Jflex for Java)

Language Processing Technologies Marco Maggini

48

Flex - Fast Lexical Analyzer Generator

•  It is used for the generation of scanners
▫  By default the text that does not match any rule is copied to the

output, otherwise the code associated to the matching RE is
executed
▫  The rule file has the following structure

Language Processing Technologies Marco Maggini

49

definitions
%%
rules
%%
C code

definitions of names
start conditions

pattern (RE) ACTION

C code (optional) that is directly
copied to lex.yy.c
- code of utilities (e.g. functions)

Flex – definitions of names

•  It’s a directive having the following structure

NAME DEFINITION

▫  NAME is a identifier starting with a letter
▫  The definition is referred to as {NAME}
▫  DEFINITION is a RE

Example
 ID [A-Za-z][A-Za-z0-9]*
 defines {ID}

▫  In the “definitions” section the indented lines or lines between
%{ and %} (at the beginning of the line) are copied to lex.yy.c

Language Processing Technologies Marco Maggini

50

Flex – Rules
▫  In the “rules” section text that is indented or delimited by

%{ and }% at the beginning of the section can be used to declare
variable local to the scan procedure (inside its scope)
▫  A rule has the following structure

PATTERN (RE) ACTION

  PATTERN is a RE with the following additions
  It is possible to specify strings between“ ” where special characters (e.g. [])

are not interpreted as operators
  It is possible to specify characters by their hexadecimal code (e.g. \x32)
  r/s matches r only if it is followed by s
  <s1,s2,s3>r matches r only if the scanner is in one of the conditions

s1,s2,s3.. (<*> can be used to specify any condition)
  <<EOF>> is matched by the end-of-file

Language Processing Technologies Marco Maggini

51

Flex – rule matching

•  The input text is progressively scanned from the
beginning

•  If more rules are satisfied at the current character, the
rule matching the longest substring is activated

•  If more than one rule matches the same substring, the
rule that is defined first is applied
▫  once a match is found, the matching token is available in the

yytext variable; the variable yyleng stores the length of the
matching substring
▫  a match causes the execution of the associated action
▫  if there is no match the input is copied to the output by default

Language Processing Technologies Marco Maggini

52

Flex – example: line/word/character counter

Language Processing Technologies Marco Maggini

53

 int nLines = 0, nChars=0, nWords = 0;
%%
\n ++nLines; ++nChars;
[^[:space:]]+ ++nWords; nChars += yyleng;
. ++nChars;
%%
main()
{
 yylex();
 printf(“%d lines, %d words, %d characters\n”,
 nLines, nWords, nChars);
}

PATTERN (RE) ACTION

scanner call

global variables

If the rules for the single characters . and for the words [^[:space:]]+ are inverted in the list
the scanner does not work correctly (the first rule always matches)
The scanner reads its input from the stream yyin (by default stdin)

%{
#include <math.h>
%}
DIGIT [0-9]
ID [a-zA-Z][a-zA-Z0-9]*
%%
{DIGIT}+ {printf(“int %s (%d)\n”, yytext, atoi(yytext));}
{DIGIT}+”.”{DIGIT}+ {printf(“float %s (%f)\n”, yytext, atof(yytext));}
if|for|while|do {printf(“keyword %s \n”, yytext);}
int|float|double|struct {printf(“data type %s \n”, yytext);}
{ID} {printf(“identifier %s \n”, yytext);}
“+”|”-”|”*”|”/” {printf(“arithmetic operator %s \n”, yytext);}
“//”[^\n]* /* removes comments on one line */
“/*”(.|\n)*”*/” /* removes comments on multiple lines */
“{“|”}” {printf(“block delimiter \n”);}
[\t\n]+ /* removes spaces etc*/
. {printf(“invalid char %s \n”, yytext);}
%%

Flex – example: minimal programming language

Language Processing Technologies Marco Maggini

54

NAME
defintions

yytext is the
matching string

Flex – variables and actions
•  Two variables are used to reference the substring matching the RE
▫  yytext

  by default is char * being a reference to the memory buffer where the original
text is stored

  using the command %array in the first section of the lex source file, we may
force the variable to be a char [], i.e. a copy of the original buffer (it can be
rewritten without the risk of affecting the scanner behavior)

▫  yyleng
  it is the character length of the substring matching the RE

•  The action is used to specify the (C) code to be executed when the
RE is matched by a substring in the input text
▫  the action is written C (using {} if it spans more than one line)
▫  the execution of a return statement causes the exit from the yylex()

functionIf yylex() is called again thereafter the scan restarts from the input
position where its was stopped.

Language Processing Technologies Marco Maggini

55

Flex – special directives in actions
•  Special directives can be specified in the action code (they are C

macros)
▫  ECHO

  copies yytext to output
▫  BEGIN(condition)

  activates the scanner state named “condition”. The scanner states allow the
selective activation of subset of rules.

▫  REJECT
  Activates the second best macthing rule (it may be verified by the same string

or by a prefix)

Language Processing Technologies Marco Maggini

56

\n ++nLines; ++nChars;
pippo ++nPippo; REJECT;
[^[:space:]]+ ++nWords; nChars += yyleng;
. ++nChars;

Flex – library functions
•  Scanner library functions can be used in the actions
▫  yymove()

  the following match is searched and its value is added to yytext
▫  yyless(n)

  n characters are pushed back into the input buffer
▫  unput(c)

  the character c is pushed back into the input buffer
▫  input()

  the next carattere is read moving forward by 1 the position of the read cursor
▫  yyterminate()

  it is equivalent to the return statement
▫  yyrestart()

  resets the scanner to read a new file (it does not reset the current condition) –
yyin is the file used for reading (stdin by default)

Language Processing Technologies Marco Maggini

57

Flex - conditions
•  The conditions allows a selective activation of rules

<SC>RE {action;}
▫  the rule is activated only if the scanner is in condition SC
▫  the conditions are defined in the initialization section of the lex source

  %s SC1 SC2 –inclusive conditions (the REs without any condition are active)
  %x XC1 XC2 – exclusive conditions (only those REs with the current condition

are active – a scanner “local to the current condition” is selected)
▫  the scanner enters into condition SC after the execution of the command

  BEGIN(SC)
▫  the initial condition is entered with the command

  BEGIN(0) or BEGIN(INITIAL)
▫  YYSTART stores the current state (it is a int variable)
▫  the REs active in the same condition can be declared in a block <SC>{…}

Language Processing Technologies Marco Maggini

58

Flex – conditions: example

Language Processing Technologies Marco Maggini

59

%x COMMENT
 int nCLines=0;
%%
“/*” BEGIN(COMMENT); nCLines++;
<COMMENT>[^*\n]* /* skips the character not * and \n */
<COMMENT>”*”+[^*/\n]* /* skips * not followed by * or */
<COMMENT>\n nCLines++;
<COMMENT>”*”+”/” BEGIN(INITIAL);
[^/]*|”/” [^*/]* /* skips characters outside comments */
%%

• Counts the comment lines in C (/* …… */)

RE in condition
COMMENT

Flex – example: parsing of string costants in C

Language Processing Technologies Marco Maggini

60

%x string
%%
 char str_buf[1024], *str_buf_ptr;
\” str_buf_ptr = str_buf; BEGIN(string);
<string> {
\” { BEGIN(INITIAL); *str_buf_ptr = ‘\0’;
 printf(“%s\n”,str_buf); }
\n printf(“String is not terminated correctly\n”); yyterminate();
\\[0-7]{1,3} {int r; sscanf(yytext+1,”%o”,&r);
 if(r>0xff) {printf(“ASCII code is not valid\n”); yyterminate();}
 *(str_buf_ptr++) = r; }
\\[0-9]+ printf(“octal code is not valid\n”); yyterminate();
\\n *(str_buf_ptr++) = ‘\n’;
…
\\(.|\n) *(str_buf_ptr++) = yytext[1];
[^\\\n\”]+ {int i; for(i=0;i<yyleng;i++) *(str_buf_ptr++) = yytext[i];}
}
%%

string start “

string parsing
up to “

Flex – multiple input buffers
•  The possibility to use multiple input buffers supports the

“concurrent” scanning of more than one file (e.g. include)
▫  the scan of a file in momentarily interrupted to start the scan of another

included file
▫  more than one input buffer can be allocated

  YY_BUFFER_STATE yy_create_buffer(FILE *file, in size)
▫  the buffer used by the scanner can be selected

  void yy_switch_to_buffer(YY_BUFFER_STATE new_buffer)
  the scan continues with the new buffer without changes in the scanner

condition
▫  created buffers can be deallocated

  void yy_delete_buffer(YY_BUFFER_STATE buffer)
▫  YY_CURRENT_BUFFER references the current buffer
▫  the rule <<EOF>> allows us to manage the end of the scanning of a file

Language Processing Technologies Marco Maggini

61

Flex – esempio di include

Language Processing Technologies Marco Maggini

62

"#include" BEGIN(incl);
<incl>{
[[:space:]]* /* skip spaces*/
\"[[:alnum:].]+\” { if(stack_ptr>=MAX_DEPTH) { /*too many nested includes*/ }
 include_stack[stack_ptr++]=YY_CURRENT_BUFFER;
 strncpy(filename,yytext+1,yyleng-1);
 filename[yyleng-2]='\0';
 if(!(yyin=fopen(filename,"r"))) { /* file open error */ }
 yy_switch_to_buffer(yy_create_buffer(yyin,YY_BUF_SIZE));
 BEGIN(INITIAL); }
[^[:space:]]+ {/* include error*/ }
}
<<EOF>> { if(--stack_ptr<0)
 yyterminate();
 else {
 fclose(YY_CURRENT_BUFFER->yy_input_file);
 yy_delete_buffer(YY_CURRENT_BUFFER);
 yy_switch_to_buffer(include_stack[stack_ptr]) }
 }

include starts

end of included
file

extract the
include file
name and file
open

